Proximally Guided Stochastic Subgradient Method for Nonsmooth, Nonconvex Problems
نویسندگان
چکیده
In this paper, we introduce a stochastic projected subgradient method for weakly convex (i.e., uniformly prox-regular) nonsmooth, nonconvex functions—a wide class of functions which includes the additive and convex composite classes. At a high-level, the method is an inexact proximal point iteration in which the strongly convex proximal subproblems are quickly solved with a specialized stochastic projected subgradient method. The primary contribution of this paper is a simple proof that the proposed algorithm converges at the same rate as the stochastic gradient method for smooth nonconvex problems. This result appears to be the first convergence rate analysis of a stochastic (or even deterministic) subgradient method for the class of weakly convex functions.
منابع مشابه
A proximal bundle method for nonsmooth nonconvex functions with inexact information
For a class of nonconvex nonsmooth functions, we consider the problem of computing an approximate critical point, in the case when only inexact information about the function and subgradient values is available. We assume that the errors in function and subgradient evaluations are merely bounded, and in principle need not vanish in the limit. We examine the redistributed proximal bundle approac...
متن کاملA Proximal Bundle Method for Nonconvex Functions with Inexact Oracles
For a class of nonconvex nonsmooth functions, we consider the problem of computing an approximate critical point, in the case of inexact oracles. The latter means that only an inexact function value and an inexact subgradient are available, at any given point. We assume that the errors in function and subgradient evaluations are merely bounded, and in principle need not vanish in the limit. We ...
متن کاملA Trust Region Spectral Bundle Method for Nonconvex Eigenvalue Optimization
We present a nonsmooth optimization technique for nonconvex maximum eigenvalue functions and for nonsmooth functions which are infinite maxima of eigenvalue functions. We prove global convergence of our method in the sense that for an arbitrary starting point, every accumulation point of the sequence of iterates is critical. The method is tested on several problems in feedback control synthesis.
متن کاملThe proximal point method revisited∗
In this short survey, I revisit the role of the proximal point method in large scale optimization. I focus on three recent examples: a proximally guided subgradient method for weakly convex stochastic approximation, the prox-linear algorithm for minimizing compositions of convex functions and smooth maps, and Catalyst generic acceleration for regularized Empirical Risk Minimization.
متن کاملA Proximity Control Algorithm to Minimize Nonsmooth and Nonconvex Semi-infinite Maximum Eigenvalue Functions
Proximity control is a well-known mechanism in bundle method for nonsmooth optimization. Here we show that it can be used to optimize a large class of nonconvex and nonsmooth functions with additional structure. This includes for instance nonconvex maximum eigenvalue functions, and also infinite suprema of such functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.03505 شماره
صفحات -
تاریخ انتشار 2017